Ref No:		
Rei No.		

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	BE	
Semester:	2	
Course Code:	18PHY22	
Course Title:	Engineering Physics	
Credit / L-T-P:	4 / 3-2-0	
Total Contact Hours:	50	
Course Plan Author:	Prof. Ravi S	

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology

#29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA

Phone / Fax:08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: skitprinci@gmail.com

Table of Contents

A. COURSE INFORMATION	2
1. Course Overview	2
2. Course Content	3
3. Course Material	
4. Course Prerequisites	3
5. Content for Placement, Profession, HE and GATE	<u>4</u>
B. OBE PARAMETERS	4
1. Course Outcomes	4
2. Course Applications	4
3. Articulation Matrix	4
4. Curricular Gap and Content	5
C. COURSE ASSESSMENT	5
1. Course Coverage	5
2. Continuous Internal Assessment (CIA)	5
D1. TEACHING PLAN - 1	5
Module - 1	
Module - 2	6
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	7
D2. TEACHING PLAN - 2	7
Module - 3	
Module - 4	8
E2. CIA EXAM – 2	
a. Model Question Paper - 2	9
b. Assignment – 2	
D3. TEACHING PLAN - 3	10
Module - 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	11
F. EXAM PREPARATION	11
1. University Model Question Paper	11
2. SEE Important Questions	12

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	All
Year / Semester :	2020 / 2	Academic Year:	2019-2020
Course Title:	Engineering Physics	Course Code:	18PHY22
Credit / L-T-P:	3-2-0	SEE Duration:	180 Minutes
Total Contact Hours:	52	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	Prof. Ravi S	Sign	Dt:
Checked By:	Dr. Savita B. Hosur	Sign	Dt:
CO Targets	CIA Target : 75 %	SEE Target:	70 %

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod	Content	Teaching Hours	Blooms Learning
ule			Levels
1	Definition of SHM, Characteristics, Examples and Derivation of differential equation of motion for SHM starting from Hooke's law and mention its solution. Mechanical simple harmonic oscillator: Mass suspended to spring (vertical vibrations) - Description, Mention of Expression for time period/frequency, Definition of force constant and its significance, Derivation of expressions for force constants for series and parallel combination of springs. Complex notation of simple harmonic motion (Aei(wt + \varepsilon)), Phasor representation of simple harmonic motion. Theory of damped oscillations (over damping critical and under damping) forced oscillations and resonance, sharpness of resonance. Example for mechanical resonance. Mach number, properties of shock waves, control volume. Laws of conservation of mass, energy and momentum. Construction and working of Reddy shock tube. Applications. Numerical Problems		L2, L3, L4
2	Concept of elasticity, plasticity, stress, strain, tensile stress, shear stress, compressive stress, strain hardening and strain softening, failure. Hooke's law, Poison's ratio, Expression for Young's modulus (Y), Bulk modulus (K) and Rigidity modulus (n). Relation between Y, K & n. Limits of Poisson's ratio. Neutral surface and Neutral Plane, derivation of expression for bending moment. Bending momentum of a beam with circular and rectangular cross section. Single cantilever. Expression for couple per unit test of a solid cylinder (Derivation), Torsional Pendulum. Numerical problems.		L2, L3, L4
3	Fundamentals of vector calculus. Divergence and curl of electric field and magnetic field (static), Gauss' divergence theorem and Stokes' theorem. Description of laws of electrostatics, magnetism and Faraday's laws of EMI. Current density & equation of Continuity; displacement current (with derivation) Maxwell's equations in vacuum. The wave equation in differential form in free space (Derivation of the equation using Maxwell's equations), Plane electromagnetic waves in vacuum, their transverse nature, polarization of EM waves (Qualitative). Propagation mechanism, angle of acceptance. Numerical aperture. Modes of propagation and Types of optical fibers. Attenuation: Causes of attenuation and		L2, L3, L4

	Mention of expression for attenuation coefficient. Discussion of block diagram of point to point communication. Merits and demerits Numerical problems		
4	Introduction to Quantum mechanics, Wave nature of particles, Heisenberg's uncertainty principle and applications (non confinement of electron in the nucleus), Schrodinger time independent wave equation, Significance of Wave function, Normalization, Particle in a box, Energy eigen values of a particle in a box and probability densities. Review of spontaneous and stimulated processes, Einstein's coefficients (derivation of expression for energy density). Requisites of a Laser system. Conditions for laser action. Principle, Construction and working of CO2 and semiconductor Lasers. Application of Lasers in Defense (Laser range finder) and Engineering (Data storage). Numerical problems		L2, L3, L4
5	Review of classical free electron theory, mention of failures. Assumptions of Quantum Free electron theory, Mention of expression for density of states, Fermi-Dirac statistics (qualitative), Fermi factor, Fermi level, Derivation of the expression for Fermi energy, Success of QFET. Fermi level in intrinsic semiconductors, Expression for concentration of electrons in conduction band, Hole concentration in valance band (only mention the expression), Conductivity of semiconductors(derivation), Hall effect, Expression for Hall coefficient(derivation) polar and non-polar dielectrics, internal fields in a solid, Clausius - Mossotti equation (Derivation), mention of solid, liquid and gaseous dielectrics with one example each. Application of dielectrics in transformers. Numerical problems		L2, L3, L4
-	Total	50	

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

- 1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 30 minutes
- 2. Design: Simulation and design tools used software tools used ; Free / open source
- 3. Research: Recent developments on the concepts publications in journals; conferences etc.

Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	A Text book of Engineering Physics - M. N. Avadhanulu and P. G.	1,10,20,2	In Lib
	Kshirsagar, S Chand & Co., 10 th Revised Ed	4	
1-5	Engineering Physics – Gaur and Gupta, Dhanpat Rai Publications - 2017	2, 4	In Lib/ In dept
	Engineering Physics – S. P. Basavaraju, Subash Publications - 2017	1-10	
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	Introduction to Mechanics – M. K. Verma, 2 nd Ed, University Press,		In Lib
3,4	Laser and Non Linear Optics – B B Laud, 3 rd Ed., New age international publishers		In Lib
5	Solid State Physics – S. O. Pillai, 8 th Ed., New age international publishers	5,6,10,11	In lib
С	Concept Videos or Simulation for Understanding	-	-
C1 -	Baisc Physics: https://www.physicsclassroom.com		web
C10	 Elasticity: https://www.youtube.com/watchv=OAK7CZSu9DA 		

	 Quantum Mechanics: NPTEL: https://www.youtube.com/watch? v=pGerRhxNQJE 		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	NPTEL		
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	A Text book of Engineering Physics - M. N. Avadhanulu and P. G.	1,10,20,	In Lib
	Kshirsagar, S Chand & Co., 10 th Revised Ed	24	
1-5	Engineering Physics – Gaur and Gupta, Dhanpat Rai Publications - 2017	2, 4	In Lib/ In dept
	Engineering Physics – S. P. Basavaraju, Subash Publications - 2017	1-10	
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	Introduction to Mechanics – M. K. Verma, 2 nd Ed, University Press,		In Lib
3,4	Laser and Non Linear Optics – B B Laud, 3 rd Ed., New age international publishers		In Lib

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

Staat	stadents mast have team the rottowing coarses 7 ropies with described content					
Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1	18PHY12	Engineering	Oscillations and Waves	Lower	Knowledge of	L1, L2
		Physics		Standards	Motion, vibrations,	
					conservation laws	
2	18PHY12	Engineering	Elastic Properties of Materials	Lower	Size, Shape of	L1, L2
		Physics		Standards	materials, Application	
					of forces	
3	18PHY12	Engineering	Maxwell's equations, EM	Lower	Study of Vector,	L2
		Physics	waves and Optical Fibers	Standards	Scalar,	
					Electromagnetic	
					waves	
4	18PHY12	Engineering	Quantum Mechanics and	Lower		L2
		Physics	Lasers	Standards	Classical Physics,	
					Emission and	
					absorption processes	
5	18PHY12		Material Science	Lower	, ,	L1, L2
		Physics		Standards	Solids, Conductivity	
					in Semiconductors	

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Area	Remarks	Blooms Level

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

-	-	Total	50	_	-	L2-L4
1,2,3, 4,5	CO4	Apply the knowledge in problem solving and construct the applications of the materials		Lecture, PPT, Videos	Slip Test	L3
3	CO3	Compute the Eigen values and eigen function by using the time independent 1D Schrodinger wave equation		Lecture, PPT, Videos	Slip Test	L3
1,3	CO2	Illustrate the point to point communication system and production of Shockwaves and Laser.		Lecture, PPT, Videos	Slip Test	L4
1,2,3, 4,5	CO1	Understand the basics concepts of Elastic properties, oscillations and waves and relate the knowledge of quantum physics to the properties of materials such as conductors, laser, optical fiber, dielectrics.		Lecture, PPT, Videos	Slip Test	L2
ules	Code.#	At the end of the course, student should be able to			nt Method	Level
Mod	Course	Course Outcome			Assessme	Blooms'

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to . . .

Mod	Application Area	CO's	Level
ules	Compiled from Module Applications.		
1	Understand the car shock absorbers and musical instruments.	CO ₄	L3
1	Analyze the concrete structures.	CO ₄	L3
2	Analyze the materials in mechanical engineering.	CO ₄	L3
2	Analyze the civil engineering structural elements.	CO ₄	L3
3	Analyze the EM communication and wireless communication.	CO ₄	L3
3	Used in the medical field, communication system.	CO ₄	L3
4	Used in materials engineering, photonics, MRI.	CO ₄	L3
4	Used in medical field, communication, Industry applications.	CO ₄	L3
5	Used in electrical and electronics engineering.	CO ₄	L3
5	Design of active electronic components.	CO ₄	L3

3. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

		tirrinapping to vot for each eco i e pair, with econes average attainment.																
_	-	Course Outcomes					Р	rogr	am	Ου	ıtcc	me	es					-
Mod	CO.#	At the end of the course	РΟ	PO	PO	PO	РО	РΟ	PO	PO	PO	РО	PO	РО	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	О1	О2	О3	el
1-5		Understand the basics concepts of Elastic properties, oscillations and waves and relate the knowledge of quantum physics to the properties of materials such as conductors, laser, optical		1	-	-	1	-	-	-	-	-	1	2	1	-	-	

		fiber, dielectrics.																
1, 3, 4	CO2	Illustrate the point to point communication system and production of Shockwaves and Laser.		2	2	-	-	-	1	-	1	1	1	1	1	-	1	
4	CO3	Compute the Eigen values and eigen function by using the time independent 1D Schrodinger wave equation		2	-	1	-	-	1	1	1	ı	1	1	1	1	1	
1-5	CO4	Apply the knowledge in problem solving and construct the applications of the materials		2	-	-	-	_	1	-	-	-	-	1	1	1	1	
-	18PHY22	Average																-
-	PO, PSO	1.Engineering Knowledge; 2.Probl 4.Conduct Investigations of Compl Society; 7.Environment and Su 10.Communication; 11.Project M S1.Software Engineering; S2.Data E	ex usta 1an	Prol aina age	bler bilit eme	ns; ;y; ent	5.M 8.E ar	ode thic nd	ern es; Fir	Too 9.11 nand	l Us ndiv ce;	age idu 12	e; 6. al	The an	En d	gine Tea	eer ımv	and ork;

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1					
2					

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

3 N a	Maxwell's Equation, EM waves and Optical Fibers Quantum Mechanics and _asers		-	2	-	1		2	CO1, CO2, CO4 CO1, CO2, CO3, CO4	L2, L3,L4 L2, L3,L4
3 1	Maxwell's Equation, EM waves	10	-	2	-	1		2	CO1, CO2, CO4	
L										
2 E	Elastic Properties of Materials	10	2	-	-	1		2	CO1, CO2, CO4	L2, L3,L4
1 (Oscillations and Waves	10	2	-	ı	1		2	CO1, CO2, CO4	L2, L3,L4
utes		Hours	CIA-1	CIA-2	CIA-3	Asg	Asg	SEE		
Mod ules	Title	Teach.		Vo. of				CEE	CO	Levels

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams, Blooms Level in last column shall match with A.2.

/ 1330	someth of tearning eateernes for the	mat chamb. Die	Johns Level III last cotainin si	attinatori witin 1.2.
Mod		Weightage in	CO	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1, CO2, CO4	L2, L3,L4
3, 4	CIA Exam – 2	30	CO1, CO2, CO3, CO4	L2, L3,L4
5	CIA Exam – 3	30	CO1, CO2, CO4	L2, L3,L4
1, 2	Assignment - 1	10	CO1, CO2, CO4	L2, L3,L4

	Final CIA Marks	40	-	-
5	Assignment - 3	10	CO1, CO2, CO4	L2, L3,L4
3, 4	4 Assignment - 2	10	CO1, CO2, CO3, CO4	L2, L3,L4

D1. TEACHING PLAN - 1

Title:	Oscillations and Waves	Appr Time	10 Hrs
a	Course Outcomes	со	Blooms
-	The student should be able to:	-	Level
1	Understand the basics concepts of Elastic properties, oscillations and waves and relate the knowledge of quantum physics to the properties of materials such as conductors, laser, optical fiber, dielectrics.	CO1	L2
2	Illustrate the point to point communication system and production of Shockwaves and Laser.	CO2	L3
3	Apply the knowledge in problem solving and construct the applications of the materials	CO3	L4
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
1	Definition of SHM, Characteristics, Examples and Derivation of differential equation of motion for SHM.	CO1	L2,
2	Mechanical simple harmonic oscillator. (Mass suspended to spring oscillator) – Description.	CO1, CO4	L3
3	Complex notation of simple harmonic motion (Aei($\omega t + \epsilon$)), Phasor representation of simple harmonic motion. Equation of motion for free oscillations	CO1	L2
4	Springs in Series and Parallel combination	CO1, CO4	L3
5	Natural frequency of oscillations. Theory of damped oscillations (over damping critical and under damping) forced oscillations	CO1, CO4	L2
6	Resonance, sharpness of resonance. Example for mechanical resonance,	CO1, CO4	L3
7	Mach number, Properties of Shock waves, control volume.	CO1, CO2, CO4	L2
8	Laws of conservation of mass, energy and momentum.	CO1	L3
9	Construction and working of Reddy shock tube	CO1, CO2, CO4	L4
10	Applications of shock waves.	CO1, CO4	L3
11	Numericals	CO ₄	L3
С	Application Areas		Level
1	Understand the car shock absorbers and musical instruments.	CO4	L3
2	Analyze the concrete structures.	CO4	L3
	, , , , , , , , , , , , , , , , , , , ,		
d	Review Questions		-
1	Define SHM	CO1	L2
2	Derivation of equation for SHM	CO1	L2
3	Define Mechanical Simple harmonic oscillator	CO1, CO4	L3
4	Explain complex notation and phasor representation of simple harmonic motion	CO1	L3
5	Derive Equation of motion for free oscillations, Natural frequency of oscillations	CO1, CO4	L3
6	Define over damping, critical & under damping, quality factor	CO1	L2
7	Explain Theory of forced oscillations and resonance, Sharpness of resonance.	CO1, CO4	L3
8	Explain One example for mechanical resonance	CO1, CO4	L3

9	Define Mach number and Mach Regimes	CO1	L2
10	Explain Properties of Shock waves	CO1, CO4	L3
11	Explain Properties of control volume	CO1, CO4	L3
12	Explain Laws of conservation of mass, energy and momentum	CO1, CO4	L3
13	Explain Construction and working of Reddy shock tube	CO ₂	L4
14	Explain applications of shock waves.	CO ₄	L3
е	Experiences	-	-
1			
2			

Title:	Elastic Properties of Materials	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand the basics concepts of Elastic properties, oscillations and waves and relate the knowledge of quantum physics to the properties of materials such as conductors, laser, optical fiber, dielectrics.	CO1	L2
2	Apply the knowledge in problem solving and construct the applications of the materials	CO4	L3
b	Course Schedule		_
Class No	Module Content Covered	СО	Level
11	Concept of elasticity, plasticity, stress, strain, tensile stress, shear stress.	CO1	L2
12	Stress, strain hardening and strain softening, failure (fracture/fatigue).	CO1	L2
13	Hooke's law, different elastic moduli: Poisson's ratio.	CO1, CO4	L3
14	Expression for Young's modulus (Y), Bulk modulus (K) and Rigidity modulus (n) in terms of α and β .	CO1, CO4	L3
15	Relation between Y, n and K. Limits of Poisson's ratio.	CO1, CO4	L3
16	Neutral surface and neutral plane, Derivation of expression for bending moment.	CO1, CO4	L3
17	Bending moment of a beam with circular and rectangular cross section. Single cantilever, derivation of expression for young's' modulus	CO1, CO4	L3
18	Torsion of cylinder: Expression for couple per unit twist of a solid cylinder (Derivation),	CO1, CO4	L3
19	Torsional pendulum-Expression for period of oscillation.	CO1, CO4	L3
20	Numerical problems	CO4	L3
С	Application Areas	СО	Level
1	Analyze the materials in mechanical engineering.	CO1, CO4	L3
2	Analyze the civil engineering structural elements.	CO1, CO4	L3
d	Review Questions	_	_
12	Define Elasticity.	CO1	L2
13	Define plasticity	CO1	L2
14	Define stress	CO1	L2
15	Define strain	CO1	L2
16	Define tensile stress	CO1	
17	Define shear stress	CO1	L2
18	Define compressive stress	CO1	 L2
19	Define strain hardening	CO1	L2
20	Define strain softening	CO1	L2

21	Define fracture in Materials.	CO1	L2
22	Define Hooke's law.	CO1	L2
23	Explain Poisson's ratio.	CO1, CO4	L3
24	Derive Expression for Young's modulus (Y) in terms of $_{74}$ and β .	CO1, CO4	L3
25	Derive Bulk modulus (K) in terms of $_{74}$ and β .	CO1, CO4	L3
26	Derive Rigidity modulus (n) in terms of $_{7A}$ and β .	CO1, CO4	L3
27	Derive Relation between Y, n and K.	CO1, CO4	L3
28	Explain Neutral surface and neutral plane.	CO1, CO4	L3
29	Derive expression for bending moment.	CO1, CO4	L3
30	Explain Bending moment of a beam with circular cross section.	CO1, CO4	L3
31	Explain Bending moment of a beam with rectangular cross section.	CO1, CO4	L3
32	Define Single cantilever.	CO1, CO4	L3
33	Derive expression for young's' modulus	CO1, CO4	L3
34	Derive Expression for couple per unit twist of a solid cylinder	CO1, CO4	L3
35	Explain Torsional pendulum.	CO1, CO4	L3
36	Derive an Expression for period of oscillation.	CO1, CO4	L3

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs C	ode:	18PHY22	Sem:	II	Marks:	50	Time:	90 minutes	
Cours	se:	Engineering	g Physics		•			•	
-	-	Note: Answ	er any 3 que	estions, each	n carry equ	al marks.	Marks	СО	Level
1	а	What are Doscillations		ations? Ded	uce the the	eory of dampe	ed 8	CO1, CO4	L3
		Define SHM mention its		the equatic	n of motio	n for SHM and	d 7	CO1, CO4	L2
		ultrasonic, subsonic and supersonic waves based on Macl number						CO1, CO4	L3
			hen it is at 🤅		CO4	L3			
				or					
2		Describe the the help of		tion and wo	orking of F	Reddy tube v	vith 8	CO2	L4
	b		Expression eries and pa			constant fo	r 2 7	CO1, CO4	L3
	С	Define reso	nance, Expl	ain the shar	pness of re	sonance.	6	CO1, CO4	L3
	d	to travel be between th	etween the	two sensors ors is 100 m	s is 195 µs m. Find the	t, the time tal s. If the distar e Mach Numl	nce	CO4	L3
3	2	Dorivo tha l	Relation bet	vyoon V n g	. 6		8	CO1, CO4	L3
3	b		elastic boo			jitudinal strai		CO1, CO4	L3
	С			Elasticity wit	h the help	of stress – str	rain 6	CO1	L2
	d	in steel w		th 2 m an Il of the bea	d diamete	xtension of 1r er 1mm.(Your ¹ N/m²·)		CO4	L3
				or					
4		Cylinder.	•		· 	t twist of so	olid 8	CO1, CO4	L3
			different typ				7	CO1	L2
	С	Mention th	e various ty	pes of bear	ms with di	agram and th	neir 6	CO1, CO4	L3

	Engineering Applications.		
	A rectangular bar 2 cm ion breadth and 1 cm in thickness and 1 m in length is supported at its one ends and a load of 2 kg is applied at its middle. Calculate the dipression if the Young's modulus of the material of the beam is 2 x 10 ¹¹ N/m ²	CO4	L3

b. Assignment -1

			Model Assignmer	nt Questi	ons			
Crs Code:	18PHY22 Ser	n: 2	Marks:	10	Time:	30 mi	nutes	
Course:	Engineering P	hysics						
SN	lo	,	Assignment Des	cription		Marks	со	Level
1	Defin	e SHM. Deriv	ation of equation	for SHM		5	CO1	L3
2	Expla	ain Mechanica	al simple harmor	nic oscilla	ator.	5	CO1	L3
3		ain complex le harmonic n		hasor re	epresentation of	5	CO1	L2
4			motion for free	oscillatio	 ns,	5	CO1	L2
5			quency of oscilla			5	CO1	L2
6		e over dam			lamping, quality		CO1	L2
7		ain theory o		lations	and resonance,	5	CO1	L2
8			ole for mechanic	al resona	ince	5	CO1	L2
S	Defin	e Mach numb	oer and Mach Re	gimes		5	CO1	L2
10	Expla	ain Properties	of Shock waves			5	CO1	L2
1:	ı Expla	ain Properties	of control volum	ie		5	CO1	L2
12		ain Laws of nentum	conservation	of mas	ss, energy and	5	CO1	L2
1(3 Expla	ain Constructi	on and working o	of Reddy	shock tube	5	CO2	L4
14	‡ Expla	ain application	ns of shock wave	S.		5	CO1, CO4	L3
1,	5 Expla	ain Elasticity a	nd plasticity			5	CO1	L2
16	Defin	e stress and s	strain			5	CO1	L2
17			ess and shear stre	ess		5	CO1	L2
18		e compressiv				5	CO1	L2
19			ening and strain	softening	9	5	CO1	L2
20		e fracture in 1				5	CO1	L2
2		e Hooke's lav				5	CO1	L2
2:		ain Poisson's r		1 00		5	CO1	L2
2;			for Young's mod	ulus (Y).		5	CO1	L2
2.		e Bulk modul				5	CO1	L2
2.		e Rigidity mo		,		5	CO1	L2
20			tween Y, n and K			5	CO1	L2
27			rface and neutra for bending mon	•		5	CO1	L2
28					h circular cross	5	CO1	L2 L2
29	secti	on.						
30	secti	on.		m with r	ectangular cross	5	CO1	L2
3:		e Single cant				5	CO1, CO4	L3
3:			for Young's mod			5	CO1	L2
3:	cylin	der .		er unit t	wist of a solid	5	CO1	L2
34	4 Expla	ain Torsional p	endulum.			5	CO1, CO4	L3

35	Derive an Expression for period of oscillation.	5	CO1	L2
36				

D2. TEACHING PLAN - 2

Title:	Maxwell's Equation, EM waves and Optical fibers	Appr Time:	10 Hrs
a	Course Outcomes	СО	Bloom
-	At the end of the topic the student should be able to	-	Level
1	Understand the basics concepts of Elastic properties, oscillations and waves and relate the knowledge of quantum physics to the properties of materials such as conductors, laser, optical fiber, dielectrics.	CO1	L2
2	Illustrate the point to point communication system and production of Shockwaves and Laser.	CO2	L4
3	Apply the knowledge in problem solving and construct the applications of the materials	CO4	L3
b	Course Schedule		
lass N	o Portion covered per hour	-	Level
21	Fundamentals of vector calculus. Divergence and curl of electric field and magnetic field (static)	CO1, CO4	L3
22	Gauss' divergence theorem and Stokes' theorem.	CO1	L2
23	Description of laws of electrostatics, magnetism and Faraday's laws of EMI.	CO1	L2
24	Current density & equation of Continuity; displacement current (with derivation) Maxwell's equations in vacuum	CO1	L2
25	The wave equation in differential form in free space (Derivation of the equation using Maxwell's equations),	CO1	L2
26	Plane electromagnetic waves in vacuum, their transverse nature, polarization of EM waves(Qualitative)	CO1	L3
27	Propagation mechanism, angle of acceptance. Numerical aperture. Modes of propagation.	CO1,CO4	L3
28	Types of optical fibers. Attenuation: Causes of attenuation and Mention expression for attenuation coefficient.	CO1,CO4	L3
29	Discussion of block diagram of point to point communication. Merits and demerits	CO2	L3
30	Numerical problems	CO ₄	L3
С	Application Areas		Level
-	Students should be able employ / apply the Module learnings to		
1	Analyze the EM communication and wireless communication.	CO4	L4
2	Optical fibers are used in the medical field, communication system.	CO2,CO4	L4 -
d	Review Questions		
-	The attainment of the module learning assessed through following questions		
1	Define Fundamentals of vector calculus.	CO1	L2
2	Define Divergence	CO1	L2
3	Define curl of electric field	CO1	L2
4	Define magnetic field (static)	CO1	L2
5	Derive Gauss' divergence theorem.	CO1, CO4	L3
6	Derive Stokes' theorem.	CO1, CO4	L3
DUVaa		OO1, OO4	

7	Describe laws of electrostatics	CO1, CO4	L2
8	Describe laws of magnetism	CO1, CO4	L3
9	Describe laws of Faraday's laws of EMI.	CO1, CO4	L4
10	Define Current density.	CO1	L2
11	Explain equation of Continuity.	CO1, CO4	L3
12	Derive displacement current Maxwell's equations in vacuum	CO1, CO4	L3
13	Derive wave equation in differential form in free space using	CO1, CO4	L3
	Maxwell's equations.		
14	Explain Plane electromagnetic waves in vacuum.	CO1, CO4	L2
15	Define transverse nature.	CO1, CO4	L2
16	Define polarization of EM waves.	CO1, CO4	L2
17	Explain Propagation mechanism in an optical fiber.	CO1, CO4	L2
18	Define angle of acceptance.	CO1, CO4	L2
19	Define Numerical aperture.	CO1, CO4	L2
20	Based on Modes of propagation Explain Types of optical fibers	CO1, CO4	L2
21	Mention the Causes of attenuation in an optical fiber.	CO1, CO4	L2
22	Mention the expression for attenuation coefficient.	CO1, CO4	L2
23	Discuss point to point communication system of an optical fiber.	CO2	L4
24	Explain Merits and demerits of an Optical Fibers.	CO1, CO2, CO4	L3

Title:		Appr Time:	10 Hrs
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Understand the basics concepts of Elastic properties, oscillations and waves and relate the knowledge of quantum physics to the properties of materials such as conductors, laser, optical fiber, dielectrics.	CO1	L2
2	Compute the Eigen values and eigen function by using the time independent 1D Schrodinger wave equation	CO3	L3
3	Apply the knowledge in problem solving and construct the applications of the materials	CO4	L3
b	Course Schedule		
	Portion covered per hour		_
1	Introduction to Quantum mechanics, Wave nature of particles.	CO1, CO4	L3
2	Heisenberg's uncertainty principle and applications (non confinement of electron in the nucleus).	CO1, CO4	L3
3	Schrodinger time independent wave equation.	CO1, CO3, CO4	L3
4	Significance of Wave function, Normalization.	CO1, CO3, CO4	L3
5	Particle in a box, Energy eigen values of a particle in a box and probability densities	CO1, CO3, CO4	L3
6	Review of spontaneous and stimulated processes, Einstein's coefficients (derivation of expression for energy density). Requisites of a Laser system. Conditions for laser action.	CO1, CO2, CO4	L3
7	Principle, Construction and working of CO2.	CO1, CO2, CO4	L3
8	Principle, Construction and working of semiconductor Lasers.	CO1, CO2, CO4	L3
9	Application of Lasers in Defense (Laser range finder) and Engineering (Data storage)	CO1, CO2, CO4	L3
10	Numerical problems	CO4	L3

С	Application Areas		Level
1	Used in materials engineering, photonics, MRI.	CO4	L3
2	Used in medical field, communication, Industry applications.	CO4	L3
d	Review Questions		_
1	Define Quantum mechanics	CO1	L2
2	Explain Wave nature of particles	CO1	L3
3	State Heisenberg's uncertainty principle.	CO1	L2
4	Show that non confinement of electron in the atomic nucleus.	CO1	L2
5	Derive Schrodinger time independent wave equation.	CO1, CO3, CO4	L3
6	Define Significance of Wave function.	CO1, CO3, CO4	L3
7	Define Significance of Normalization.	CO1, CO3, CO4	L3
8	Define Particle in a box.	CO1, CO3, CO4	L3
9	Derive Energy eigen values of a particle in a box.	CO1, CO3, CO4	L3
10	Explain probability densities.	CO1, CO3, CO4	L3
11	Define spontaneous Emission processes.	CO1, CO2, CO4	L3
12	Define stimulated Emission processes.	CO1, CO2, CO4	L3
13	Derive expression for energy density of radiation interms of Einstein's coefficients.	CO1, CO2, CO4	L3
14	Explain Requisites of a Laser system.	CO1, CO2, CO4	L3
15	Define Conditions for laser action	CO1, CO2, CO4	L3
16	Explain Principle, Construction and working of CO2 Lasers.	CO1, CO2, CO4	L3
17	Explain Principle, Construction and working of semiconductor Lasers.	CO1, CO2, CO4	L3
18	Explain Laser range finder.	CO1, CO2, CO4	L3
19	Explain Data storage.	CO1, CO2, CO4	L3
е	Experiences	-	-
1			
2			
1			
2			

E2. CIA EXAM - 2

a. Model Question Paper - 2

k	e:	Engineering	n Dhysics							
1 6										
k		Note: Answer any 2 questions, each carry equal marks.						Mark	СО	Level
		With neat c and Acceptanc	J	rive an ex	rpression for r	numerical	aperture	s 8	CO1	L2
	b	With neat c	diagram exp	lain the d	different types	of optica	al fiber	8	CO1	L2
		& write any	Explain point to point communication system using optical fibers.				tical fibers.	5	CO2	L4
(its cladding	g material hanto it in air. (as a refra Calculate	rial with refrac ctive index of its numerical	1.45. The	light is	4	CO4	L3
					Or					
2 8	_	Describe th	he concep	t of dive	rgence. Deriv	e Gauss	divergence	8	CO1, CO4	L3

	b	Mention Maxwell's equations for electromagnetic field. Starting from Maxwell's equation deduce the wave equation for a plane wave in free space.	8	CO1, CO4	L3
	С	What is displacement current? Obtain the expression for displacement current.	5	CO1, CO4	L4
	d	Calculate the curl of \vec{A} , given $\vec{A} = (1+yz^2)\hat{a} + xy^2\hat{a} + x^2y\hat{a}$	4	CO4	L4
3	а	Derive expression for energy density of radiation in terms of Einstein's coefficients.		CO1, CO4	L2
	b	Explain Construction and working of Semiconductor Diode Laser With Diagram.	8	CO1, CO2, CO4	L4
	С	Explain Range Finder and Compact Disc.	5	CO1, CO4	L3
	d	The average output power of laser source emitting a laser beam of wavelength 6328 A° is 5mW. Find the number of emitted photons emitted per second by the laser source.	4	CO4	L3
		Or			
4	а	Obtain the solution of Schrodinger's time independent wave equation, When applied to a potential well of infinite height.	8	CO1, CO3, CO4	L4
	b	Derive Time independent Schrödinger wave equation.	8	CO3, CO4	L3
	С	Explain Heisenberg's uncertainty principle and give its physical significance.	5	CO1, CO4	L3
	d	An electron is bound in a one dimensional potential well of width 0.18nm. Find its energy value in eV in the second excited state. (Given $h=6.63 \times 10^{-34} JS$, $m=9.11 \times 10^{-31} Kg$)	4	CO4	L3

b. Assignment – 2

	Model Assignment Questions			
Crs Code:	18PHY22 Sem: II Marks: 10 Time:			
Course:	Engineering Physics			
SNo	Assignment Description	Mark	СО	Level
		S		
1	Define Fundamentals of vector calculus.	5	CO1	L1
2	Define Divergence and curl of electric field.	5	CO1	L1
3	Define magnetic field (static) and Derive Gauss' divergence theorem.	5	CO1	L1
4	Derive Stokes' theorem.	5	CO1	L3
5	Describe laws of electrostatics and laws of magnetism.	5	CO1	L2
6	Describe laws of Faraday's laws of EMI and Current density.	5	CO1	L2
7	Explain equation of Continuity.	5	CO1	L3
8	Derive displacement current Maxwell's equations in vacuum	5	CO1	L3
9	Derive displacement current Maxwell's equations in vacuum	5	CO1	L3
10	Derive wave equation in differential form in free space using	5	CO1	L3
	Maxwell's equations.			
11	Explain Plane electromagnetic waves in vacuum.	5	CO1	L2
12	Define transverse nature and polarization of EM waves.	5	CO1	L1
13	Explain Propagation mechanism in an optical fiber.	5	CO1	L2
14	Define angle of acceptance and Numerical aperture.	5	CO1	L1
15	Based on Modes of propagation Explain Types of optical fibers	5	CO4	L3
16	Explain the Causes of attenuation in an optical fiber and Mention	5	CO2, CO4	L3
	the expression for attenuation coefficient.			
17	Discuss point to point communication system of an optical fiber.	5	CO2	L4

18	Explain Merits and demerits of an Optical Fibers.	5	CO1, CO2, CO4	L2
19	Explain the necessity of Quantum mechanics and Wave nature of particles	5	CO1, CO2, CO4	L2
20	State and Explain Heisenberg's uncertainty principle.	5	CO1, CO4	L2
21	Show that non confinement of electron in the atomic nucleus.	5	CO1, CO4	L3
22	Derive the Schrodinger time independent wave equation.	5	CO1, CO4	L4
23	Define Significance of Wave function and Normalization.	5	CO3, CO4	L3
24	Define Particle in a box and Derive Energy eigen values of a particle in a box and Probability density.	5	CO1, CO3, CO4	L1
25	Define spontaneous Emission processes and stimulated Emission processes.	5	CO1, CO3, CO4	L1
26	Derive expression for energy density of radiation in terms of Einstein's coefficients.	5	CO1, CO3, CO4	L3
27	Explain the Requisites and Conditions for laser action.	5	CO1, CO2, CO4	L2
28	Explain Principle, Construction and working of CO2 Lasers.	5	CO2	L4
29	Explain Principle, Construction and working of semiconductor Lasers.	5	CO2	L4
30	Explain Laser range finder and Data storage.	5	CO4	L4
31	Explain Laser Cutting, laser welding and Laser Drilling.	5	CO4	L3
32				

D₃. TEACHING PLAN - 3

Title:	Material Science	Appr Time:	10 Hrs
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
	Understand the basics concepts of Elastic properties, oscillations and waves and relate the knowledge of quantum physics to the properties of materials such as conductors, laser, optical fiber, dielectrics.	CO1	L2
	Apply the knowledge in problem solving and construct the applications of the materials	CO4	L3
b	Course Schedule		
Class No	Module Content Covered	СО	Level
41	Quantum Free electron theory of metals: Review of classical free electron theory, mention of failures.	CO1, CO4	L3
42	Assumptions of Quantum Free electron theory, Mention of expression for density of states.	CO1, CO4	L3
43	Fermi-Dirac statistics (qualitative), Fermi factor, Fermi level,	CO1, CO4	L4
44	Derivation of the expression for Fermi energy, Success of QFET.	CO1, CO4	L4
45	Fermi level in intrinsic semiconductors, Expression for concentration of electrons in conduction band, Hole concentration in valance band (only mention the expression),	CO1, CO4	L4
46	Conductivity of semiconductors(derivation),	CO1, CO4	L3
47	Hall effect, Expression for Hall coefficient(derivation)	CO1, CO4	L3
48	Polar and non-polar dielectrics, Internal fields in a solid, Clausius- Mossotti equation(Derivation),	CO1, CO4	L3
49	Mention of solid, liquid and gaseous dielectrics with one example each. Application of dielectrics in transformers.	CO1, CO4	L3
50	Numerical problems	CO4	L4

С	Application Areas	СО	Level
1	Used in electrical and electronics engineering.	CO ₄	L4
2	Design of active electronic components.	CO ₄	L4
d	Review Questions		-
1	Define classical free electron theory.	CO1, CO4	L1
2	Define Failures of classical free electron theory.	CO1, CO4	L3
3	Explain Assumptions of Quantum Free electron theory.	CO1, CO4	L2
4	Mention of expression for density of states.	CO1, CO4	L4
5	Mention of expression for Fermi-Dirac statistics	CO1, CO4	L2
6	Mention of expression for Fermi factor	CO1, CO4	L2
7	Mention of expression for Fermi level	CO1, CO4	L2
8	Derive the expression for Fermi energy, Success of QFET	CO1, CO4	L3
9	Explain Fermi levels in intrinsic semiconductors.	CO1, CO4	L4
10	Expression for concentration of electrons in conduction band.	CO1, CO4	L1
11	Mention the expression for Hole concentration in valance band.	CO1, CO4	L4
12	Derive the expression for Conductivity of semiconductors.	CO1, CO4	L3
13	Explain Hall effect.	CO1, CO4	L2
14	Derive the expression for Hall coefficient.	CO1, CO4	L3
15	Explain polar dielectrics.	CO1, CO4	L3
16	Explain non-polar dielectrics.	CO1, CO4	L2
17	Explain internal fields in a solid.	CO1, CO4	L2
18	Derive the Expression for Clausius-Mossotti equation.	CO1, CO4	L3
19	Mention Solid dielectrics with one example.	CO1, CO4	L2
20	Mention liquid dielectrics with one example.	CO1, CO4	L2
22	Mention gaseous dielectrics with one example.	CO1, CO4	L2
23	Explain Application of dielectrics in transformers.	CO1, CO4	L3
е	Experiences	-	-
1			
2			

E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs Code	Crs 18PHY22 Serr Code:		Sem:	II	Marks:	30	Time:	75 min	utes	
Cour	ourse: Engineering Physics									
-	-						narks.Derive the using maxwell's		СО	Level
1	а	Discuss the	e failures of	classical free	e electron t	neory.		6	CO1, CO4	L3
	b	Give the as	sumptions	of QFET.				5	CO1, CO4	L3
	С	energy le	vel 0.02 e	eabilities of eV above the eV below the	ne fermi le	evel and	d that in an	4	CO4	L4
					Or					
2	a	What is Ha Hall Coeffic		btain the ex	pression fo	Hall vo	ltage in terms of	6	CO1, CO4	L3
	b	Define the	Fermi fac	ctor. Explain	the variati	on of fe	ermi factor with	5	CO1, CO4	L3

		example.			
	С	The Hall coefficient is $3.68 \times 10^{-6} \text{ m}^{-3}/\text{C}$. What is the type of charge carriers? Also calculate the carrier concentration.	4	CO4	L4
3	а	Obtain the relation between fermi energy and energy gap for an Intrinsic semiconductor.	6	CO1, CO4	L4
	b	Discuss the various types of polarization.	5	CO1, CO4	L4
	С	The following data given for intrinsic germanium at 300 K, ni = 2.4 X 10	4	CO4	L4
		19/m3, μ 0 = 0.39 m2v-1s-1, μ h=0.19 m2v-1s-1. Calculate the resistivity of sample.			
		Or			
	а	Derive the Expression for Clausius-Mossotti equation.	6	CO1, CO4	L4
	b	Explain Application of dielectrics in transformers.	4	CO1, CO4	L3
	С	If a NaCl crystal is subjected to an electric field of 1000 V/m and the		CO4	L4
		resulting polarization is 4.3 X 10-8 C/m2, Calculate the dielectric constant of NaCl.			

b. Assignment - 3

Model Assignment Questions									
Crs Code:	18PHY22 Sem: II	Marks:	10	Time:	30 mi	nutes			
Course:	Engineering Physics								
SNo	Assignme	nt Descripti	on		Marks	СО	Level		
1	Define classical free electron the	eory.			5	CO1, CO4	L2		
2	Define Failures of classical free	electron the	ory.		5	CO1, CO4	L3		
3	Explain Assumptions of Quantur	n Free elect	ron theory	/.		CO1, CO4	L4		
4	Mention of expression for destatistics.	ensity of s	tates and	l Fermi-Dirac	5	CO1, CO4	L3		
5	Mention of expression for Fermi				5	CO1, CO4	L2		
6	Derive the expression for Fermi			ET	5	CO1, CO4	L3		
7	Explain Fermi levels in intrinsic s	emiconduc	tors.		5	CO1, CO4	L3		
8	Mention the expression for conduction band and Hole cond				5	CO1, CO4	L3		
9	Derive the expression for Condu	ctivity of se	miconduc	tors.	5	CO1, CO4	L4		
10	Exlain Hall effect. And Derive the	expression	for Hall c	oefficient.	5	CO1, CO4	L4		
11	Explain polar dielectrics and nor	n-polar diele	ectrics.		5	CO1, CO4	L3		
12	Explain internal fields in a solid.				5	CO1, CO4	L2		
13	Derive the Expression for Clausi				5	CO1, CO4	L2		
14	Mention Solid, liquid and gaseou	us dielectric	s with one	example.	5	CO1, CO4	L3		
15	Explain Application of dielectrics	s in transforr	ners.		5	CO1, CO4	L4		

F. EXAM PREPARATION

1. University Model Question Paper

Course:	Engineering Physics				Mor	nth /	/Jan/2020		
						Yea	r		
Crs Code:	18PHY22	Sem:	II	Marks:	100	Tim	e:	180 minute:	S
- Note	Answer all FIVE	full question	s. All questio	ns carry equa	al marks.	•	Mark	СО	Level

			S		
1	а	Define SHM. Derivation of equation for SHM.	5	CO1, CO4	L3
	b	Explain complex notation and phasor representation of simple harmonic motion.	6	CO1, CO4	L3
	С	Derive Expression for Young's modulus (Y), Bulk modulus (K) and Rigidity modulus (n) in terms of TA alpha and Beta.	5	CO1, CO4	L3
	d	Calculate the period of oscillation of a mass 40kg on a spring with constant k=10 N/m.	4	CO4	L3
		OR			
2	а	Explain Construction and working of Reddy shock tube and Applications of Shock Waves.	5	CO2, CO4	L4
	b	Define Resonance. Explain Sharpness of Resonance and give an example for Mechanical Resonance.	6	CO1, CO4	L3
	С	Define Elasticity, plasticity, stress, strain, tensile stress and shear stress.	5	CO1	L2
	d	In a Reddy Tube experiment, it was found that, the time taken to travel between the two sensors is 195µs. If the distance between the two sensors is 100nm, find the Mach number.	4	CO4	L3
2	2	Explain strain hardening and strain softening.		CO1	L2
3	a b	Derive Expression for Young's modulus (Y), Bulk modulus (K) and	<u>5</u>	CO1, CO4	L3
		Rigidity modulus (n) in terms of ¬¬, and β.			
	C	Explain Bending moment of a beam with circular cross section.	5	CO1, CO4	<u>L3</u>
	d	A particle executes a SHM of period of 10s and amplitude of 1.5m. Calculate its maximum acceleration and velocity.	4	CO4	L4
	_	OR		001	١٥
4	a	Derive the expression for bending moment.	5	CO1	L2
	b	Derive the Expression for couple per unit twist of a solid cylinder.	6	CO1, CO4	L3
	c d	Explain Neutral surface and neutral plane. Calculate the percentage change in the frequency of oscillations of a	5 4	CO ₁	L2 L4
	u	spring if the mass attached to the spring is increased by 50%.	4	CO4	L4
5	a	Explain Attenuation mechanism and mention the equation of attenuation coefficient.	5	CO1	L2
	b	Derive the wave equation in differential form in free space using maxwell's equation	6	CO1	L2
	С	Define Divergence and curl of electric and magnetic field.	5	CO1	L2
	d	Find the ratio of population of two energy levels in a medium at thermal equilibrium, if the wavelength of light emitted at 291K is 6928A°.	4	CO ₄	L4
		OR			
6	а	Discuss point to point communication system with Block Diagram.	5	CO2	L4
	b	Derive angle of acceptance and Numerical aperture in an optical fiber.	6	CO1	L2
	С	Explain Applications of dielectrics in transformers.	5	CO1, CO4	L3
	d	Find the ratio of population of two energy levels in a medium at thermal equilibrium, if the wavelength of light emitted at 291K is 6928A°.	4	CO4	L3
7	2	Explain Heisenberg uncertainty principle with an example.		CO ₁	L2
/	a b	Explain Principle, Construction and working of CO2 Lasers.	<u>5</u> 6	CO1	L3
	С	Find Energy eigen values of a particle in a box.	5	CO ₂	L3
	d	An electron is bound in a one dimensional potential well of width 0.18nm. Find its energy value in eV in the second excited state.	4	CO4	L3
		OR			
8	а	Derive time independent Schrodinger wave equation.	5	CO1	L2
	b	Explain Principle, Construction and working of semiconductor Lasers.	6	CO2, CO4	L4
	С	Explain the Requisites and Conditions for laser action.	5	CO2, CO2	L3
	d	A He-Ne laser is emitting a laser beam with an average power of	4	CO4	L3

		4.5mW. Find the number of photons emitted per second by t6he laser. The wavelength of emitted radiation is 632.8A°			
9	а	Explain the failures of classical free electron theory.	5	CO1, CO4	L2
	b	Derive the conductivity of semiconductor.	6	CO1, CO4	L3
	С	Explain the success of free electron theory.	5	CO1, CO4	L2
	d	A 5.00 μ F parallel plate capacitor has air between the plates. When an insulating material is placed between the plates, the capacitances increases to 13.5 μ F. Find the dielectric constant of the insulator.	4	CO4	L3
		OR			
10	а	Define Hall effect and Derive the Expression for Hall coefficient.	5	CO1, CO4	L3
	b	What are Dielectrics. Derive Clausius-Mossotti equation.	6	CO1, CO4	L3
	С	Explain Application of dielectrics in transformers.	5	CO1, CO4	L3
	d	The Hall coefficient is $3.68 \times 10^{-6} \text{ m}^{-3}/\text{C}$. What is the type of charge carriers? Also calculate the carrier concentration.	4	CO4	L3

2. SEE Important Questions

Cour	se:		1onth / ear	Jan /2020	
Crs C	ode:	18PHY22 Sem: II Marks: 100 T	ime:	180 minute	S
	Note	Answer all FIVE full questions. All questions carry equal marks.	-	-	
Mod ule		Important Questions	Marks	СО	Year
1	1	Define SHM. Derivation of equation for SHM.	5	CO1, CO4	
	2	Explain complex notation and phasor representation of simple harmonic motion.		CO1, CO4	
	3	Define over damping, critical & under damping, quality factor	4	CO1, CO4	
	4	Define Resonance. Explain Sharpness of Resonance and give a example for Mechanical Resonance.	1 5	CO1, CO4	
	5	Explain Construction and working of Reddy shock tube and Applications of Shock Waves.	d 6	CO1, CO4	
2	1	Define Elasticity, plasticity, stress, strain, tensile stress and shea stress.	r 6	CO1, CO4	
	2	Derive Expression for Young's modulus (Y), Bulk modulus (K) and Rigidity modulus (n) in terms of $_{76}$ and β .	d 6	CO1, CO4	
	3	Derive the expression for bending moment.	5	CO1, CO4	
	4	Explain Torsional pendulum and give its theory.	5	CO1, CO4	
	5	Explain Bending moment of a beam with circular and rectangula cross section.	r 6	CO1, CO4	
3	1	Define Divergence and curl of electric and magnetic field.	6	CO1, CO4	
	2	Derive angle of acceptance and Numerical aperture in an optica fiber.		CO1, CO4	
	3	Derive the wave equation in differential form in free space using maxwell's equation.	5	CO1, CO4	
	4	Explain Attenuation mechanism and mention the equation cattenuation coefficient.	of 6	CO1, CO4	
	5	Discuss point to point communication system with Block Diagram.	5	CO2, CO4	
4	1	Explain Heisenberg uncertainty principle with an example.	5	CO1, CO4	
	2	Derive time independent schrodinger wave equation.	6	CO1, CO4	
	3	Find Energy eigen values of a particle in a box.	6	CO1,CO3, CO4	
	4	Explain Principle, Construction and working of CO2 Lasers.	6	CO2, CO4	
	5	Explain Principle, Construction and working of semiconductor Lasers	s. 6	CO2,CO4	

COURSE PLAN - CAY 2019-20

5	1	Explain the failures of classical free electron theory	5	CO1, CO4	
	2	Explain the success of free electron theory	5	CO1, CO4	
	3	Derive the conductivity of semiconductor.	5	CO1, CO4	
	4	Define Hall effect and Derive the Expression for Hall coefficient.	6	CO1, CO4	
	5	What are Dielectrics. Derive Clausius-Mossotti equation.	6	CO1, CO4	